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ABSTRACT 

 
 
 

 
Title of Document: Measuring Early Pre-symptomatic Changes in 

Locomotion of Rodent Models of Neurological 
and Neuromuscular Diseases  

  
 Wenlong Tang, Doctor of Philosophy, 2010 
  
Directed By: Dr. Uri Tasch 

Professor 
Department of Mechanical Engineering 
University of Maryland, Baltimore County 

 
 

 
Neurological and neuromuscular diseases are usually difficult to diagnose at early 

stages. The aim of this Ph.D. dissertation is to detect neurological and neuromuscular 

diseases early by using a gait analysis system in laboratory rats. This includes 

diseases such as Amyotrophic Lateral Sclerosis, muscular injuries, and Parkinson’s 

disease. Several preliminary experiments have been developed on rodents that have 

been used as animal models for human diseases. This work developed an effective 

noninvasive diagnostic methodology which can provide the probability that a rat is 

exposed to a disease that affects its locomotion. The gait analysis system measures 

ground reaction forces and associated time and frequency parameters when a rat 

walks on the sensor module. These measurements are used as input to a logistic 

regression model that assesses the probability that the animal model has a specific 

disease that affects its locomotion. 
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All the models we have developed have achieved specificity and sensitivity 

values of at least 90%. This dissertation has the potential to have a significant impact 

on helping to diagnose diseases that affect locomotion early, which is currently very 

difficult to do effectively. This new methodology also has the potential to be 

instrumental in finding and validating new therapeutic procedures for the studied 

ailments. 
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Chapter 1: Introduction 

1.1 Background 

Recently, increasing number of people affected by neurodegenerative diseases 

such as Amyotrophic Lateral Sclerosis (ALS), neuromuscular injuries, and 

Parkinson’s disease (PD) create a growing need for effective diagnosis and treatment 

protocols (Liao et al., 2008). An estimated 6.8 million people die every year as a 

result of neurological disorders all over the world and 127 million Europeans 

currently suffer from one or more neurological disorders. An American study 

estimated the cost of multiple sclerosis in 2004 in the US was 8.3 billion dollars. In 

Europe, the economic cost of direct medical expenditures for neurological diseases 

alone was estimated at about 135 billion Euros in 2004 (Andlin-Sobocki et al., 2005). 

Currently, to detect the presence of a neurological and neuromuscular disease 

noninvasively at an early stage is extremely difficult. ALS, also called Lou Gehrig’s 

disease, is a deadly neurodegenerative disease that affects almost selectively motor 

neurons (Galan et al., 2007). ALS is difficult to diagnose early because the symptoms 

are similar to those of other, often treatable, neuromuscular disorders where 

neurodegeneration does not occur. The diagnosis of ALS is usually based on a 

complete neurological examination and various clinical tests. These tests include 

muscle related tests and behavior tests. The tests focus on the denervation and 

reinervation changes in muscles and the loss of motor neurons in the ALS patients 

(Fischer et al., 2004).  
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Large number of experiments focus on the testing of animal models of human’s 

neurological and neuromuscular diseases. Jackson et al. (2002) developed superoxide 

dismutase (SOD) rodent animal models of ALS. Niu et al. (2007) employed step-

down test to examine the behavioral reaction of the rats with ALS and other diseases 

like Parkinsonism, which cause extensive damage to the nervous system. The latency 

of SOD rats was significantly lower than that of controls and the number of 

performance errors in 5 minutes of exposure was significantly higher than that of the 

control rats. Since the initial symptoms of ALS are unremarkable, the disease is often 

undetected in its early stages; however, as more motor neurons fail, the muscles 

controlled by them stop functioning normally. Eventually, the muscles weaken, 

become paralyzed, and in most cases, a respiratory failure is the cause of death.  

At the present time, there is no effective treatment for ALS. This is due in part to 

the motor neurons’ degeneration and the contributions of other cells, known as glia, 

towards their demise. Although some drug candidates have been developed, current 

treatments help alleviate the symptoms but do not stop the progression of the disease 

(Nicaise et al., 2008).  Furthermore, the search for new therapeutic procedures has 

been hindered by the lack of early and reliable diagnosis.  Early detection of ALS is 

essential for both identifying appropriate candidate animals for inclusion in the 

treatment group and monitoring the progress and efficacy of the treatment. Thus, 

early detection and the ability to assess the progression of the disease are critical for 

the development of new and effective therapeutic treatments for ALS (Babu et al., 

2008).  
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Scientists have tried to develop some ways to detect early symptoms of 

neurological and neuromuscular locomotion dysfunctions in animal models. 

Matsumoto et al. (2006) published five approaches to detect ALS disease in a rat: 

body weight, inclined plane, cage activity, SCANET, and righting reflex. They found 

that the disease progression can be classified into four stages: initiation of motor 

neuron loss, initiation of body weight loss, onset of muscle weakness, and end-stage 

disease. Other behavior tests were introduced by Garbuzova-Davis et al. (2001) and 

Offen et al. (2009).  These behavior tests include: 

(i) Extension reflex: Extension of the hindlimbs is observed while a mouse is 

suspended from its tail. A score (0–2) is given, indicating the number of hindlimbs 

that are normally extended. 

(ii) Rotorod: The number of times that a mouse falls from a rotating axle (3.2 cm 

in diameter at 16 rpm) during a 3-min period.  

(iii) Beam balance: The number of times a mouse crosses a beam (45 cm long and 

12 mm in diameter) during a 3-min period. 

 (iv) Footprint: The mouse leaves a series of footprints on a paper track (50×10 

cm). Run time, number of steps, distance between fore and hind limbs on left and 

right sides are measured.  

Suzuki et al. (2007) found that the onset of ALS was consistently earlier in male 

than in female superoxide dismutase 1-glycine 93 changed to alanine (SOD1-G93A) 

rats. They also discovered that SOD1-G93A male rats lost weight more rapidly 

following the disease onset than SOD1-G93A females; and that motor dysfunction 

started earlier in males than in females but progressed similarly by testing locomotor 
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function using the Basso-Beattie-Bresnahon (BBB) rating scale and a beam walking 

test. Niebroj et al. (2007) presented the results of biochemical and electron 

microscopic (EM) examinations of the spinal cord myelin from SOD1-G93A rats in 

the early and late symptom-free period of the disease (60 and 93 days of life) and 

after four-leg paralysis has occurred (120 days of life); biochemical examinations 

indicated a decrease of lipids, phospholipids, cholesterol and cerebrosides. Thonhoff 

et al. (2007) identified early disease progression in ALS rat models by measuring the 

peak bodyweight in relation to weight fluctuations. 

Muscular injury is not a neurological disease, thus, scientists are interested in 

studying the recovery mechanisms of muscle injuries (Lovering et al., 2007). Some 

muscle injuries are caused by a single lengthening contraction (Lovering et al., 2005). 

Mechanical stabilization is largely imparted by the muscles associated with a joint 

and can be impaired by muscle strains that are due to sport-related injuries (Garrett, 

1996; Best, 1997), labor, or motor vehicle accidents (Kettler et al., 2002; Brault et al., 

2000). The animal model of neuromuscular injury is induced by repeated large strain 

lengthening contractions of the dorsiflexors muscles as shown in Figure 1.1. 
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Figure 1.1 Muscle Injury Model: the tibia of the hindlimb was stabilized and the 
foot secured to a plate driven by a stepper motor. The peroneal nerve was used to 

stimulate the TA anterior (a dorsiflexor) at a selected time while the plate forced the 
foot into plantar flexion at a selected velocity (Lovering et al., 2005). 

 
Similarly to ALS, Parkinson’s disease (PD) is difficult to diagnose in its early 

stages. PD is one of the most common chronic neurodegenerative diseases. The main 

symptoms of PD are bradykinesia, rigidity, rest tremor and postural instability 

(Twelves et al., 2003). Researchers have contributed a number of findings to help 

investigate PD. Two rodent models, which are methyl-phenyl-tetrahydro-pyridine 

(MPTP) treated mice and 6-Hydroxydopamine (6-OHDA), are widely used for 

research purposes of this disease (Schober 2004). Muir and Whishaw (1999) have 

studied the behavioral differences between the 6-OHDA rats and control rats by using 

a miniature force platform as shown in Figure 1.2. The center of the weight of 6-

OHDA rats could not follow a sine wave whereas the center of weight of control rats 

followed it at the walk, as shown in Figure 1.3 (a).  The sum of the vertical ground 

reaction forces (GRFs) from the diagonal legs has only one peak for the control and 
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more for the 6-OHDA (see Figure 1.3 (b)). Yet, the methods listed above cannot 

detect PD early. 

 

Figure 1.2 Miniature force platform. Semiconductor strain gauges mounted on 
spring blades are sensitive to vertical and horizontal deformation of the beams caused 
by forces exerted when the animal moves over the wooden cover (Full and Tu, 1990). 

 

 

Figure 1.3 (a) By measuring the ground reaction forces in vertical direction, it 
was found that the mass center of a control rat followed a sine wave when the rat was 

walking while Parkinson’s rats didn’t (Muir and Whishaw, 1999). 
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Figure 1.3 (b) By measuring the ground reaction forces in vertical direction, it 
was found that the sum of the forces from diagonal legs during about the same period 
of time has only one peak for control rats while the rats with Parkinson’s disease have 

more than one peaks (Muir and Whishaw, 1999). 
 

Despite all the research methods above, neither muscles related tests nor behavior 

tests are able to detect the disorders due to PD early and accurately enough. Gait 

analysis systems have been widely used to detect neurological and neuromuscular 

diseases due to its simple implementation, low cost, reduced complication and non-

invasive procedure (Neumann et al., 2009; Hamers et al., 2001; Koopmans et al., 

2006). A digital imaging system called DigiGaitTM, shown in Figure 1.4, was 

developed by Mouse specifics, Inc. (Hampton et al., 2004; Wooley et al., 2005; Li et 

al., 2005). A mouse or a rat is put on the transparent treadmill enclosed in a 

compartment. The treadmill belt maximizes the efficiency of the camera and image 

processing software to identify paw contact with the treadmill surface at various 

walking and running speeds. Eleven gait parameters, listed in Table 1.1, can be 

generated in time and space domains. 
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Figure 1.4 DigiGaitTM made by Mouse Specifics Inc. The system has a treadmill 
on the bottom of the transparent compartment. The speed of the treadmill and the size 
of the compartment are adjustable. A video camera records bottom images of the rat 
that walks through the system. All the locomotion parameters are generated from the 

analysis of the images. 
 

Table 1.1 Description of gait parameters that were used to evaluate change in gait 
following intraarticular injection of carrageenan by DigiGaitTM . (Berryman et al., 

2009) 
Gait Indices Description 

1. Swing Time (sec) The forward portion of the stride during which the paw is 
not in contact with the belt 

2. Stance/Swing (ratio) The ratio of Stance time to Swing time 
3. Braking Time (sec) The time between initial paw contact with the belt to the 

maximal paw contact 
4. Stance Time (sec) The portion of the stride in which the paw remains in 

contact with the belt 
5. % Stance/Stride The percent of time that the Stance Time contributes to 

one complete Stride cycle 
6. Stride Length (cm) The distance between initial contacts of the same paw in 

one complete stride 
7. Stride Time (sec) The amount of time to complete one complete stride for 

one limb 
8. % Swing/Stride The percent of time that the Swing Time contributes to 

one complete Stride cycle 
9. % Propulsion/Stride The percent of time that the Propulsion Time contributes 

to one complete Stride cycle 
10. Paw Area (cm2) The maximal paw area in contact with the treadmill 

during the stance phase of the step cycle 
11. Stance Width (cm) The distance between the two front feet or the two hind 

feet as measured from the middle of the paw area 
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Similarly, Noldus information technology has a gait analysis system called 

CatWalkTM, shown in Figure 1.5 (Noldus IT, 2006). CatWalkTM is also a video-based 

system used to assess locomotion deficits and pain-induced gait adaptations in 

voluntarily walking mice or rats. Gait parameters listed in Table 1.2 can be generated 

by this system. 

 

Figure 1.5 CatWalkTM invented by Noldus Information Technology. The floor of the 
system is transparent and lightened by arrays of LED. Only at the points where a paw 
touches the glass, light exits the floor and scatters at the paw, illuminating the points 

of contact only (Noldus IT, 2006). 
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Table 1.2 Description of gait parameters that were used to evaluate change in gait by 

CatWalkTM . (Neumann et al., 2009; Deumens et al., 2007) 
CatWalk 

Parameters Explanation 

1.Base-of-support 
(BOS) 

Distance between two hindpaws, as measured perpendicular 
to the waking direction 

2.Stride length (cm) Distance between the placement of a hindpaw and the 
subsequent placement of the same paw 

3.Box length Length of the box which is artificially placed around the paw 
prints by the CatWalkTM software program 

4.Box width Width of the box which is artificially placed around the paw 
prints by the CatWalkTM software program 

5.Maximum area Total surface area of the glass floor contacted by the hindpaw 
at the moment of maximum paw-floor contact during the 
stance phase of the hindpaw 

6.Print area Total surface area of the glass floor contacted by the hindpaw 
during the complete stance duration 

7.Mean intensity Mean intensity of the pixels forming the maximum area 
8.Stance duration  Time of contact of the hindpaw with the glass floor 
9.Swing duration Time that the hindpaw is not in contact with the glass floor 
10.Regularity index 
(RI) 

An index for the degree of interlimb coordination during 
gait, as measured by the number of normal step sequence 
patterns (NSSP). Multiplied by four (number of paws), 
divided by the number of paw placements, and multiplied by 
100%; RI=(NSSP× 4)/number of paw placements × 100%, 
With respect to RI six NSSP have been previously described 
(Cheng et al., 1997) and involve cruciate, alternate, and 
rotary step patterns 

11.Phase lags Parameters that appreciate the timing relationships between 
paw placements. The time of initial contact of one paw (the 
target) is related (expressed as a percentage) to the stride 
length of another paw (the anchor). Phase lags can be 
calculated between the paws of the same girdle (forepaws or 
hindpaws), between paws on the same side (ipsilateral left or 
ipsilateral right), and between diagonal paws (opposite 
forepaw/hindpaw) 

 
According to Table 1.1 and Table 1.2, it is obvious that DigiGaitTM and 

CatWalkTM can only measure gait parameters that are in time and space domains. Due 

to this limitation, some gait abnormalities which affect the ground reaction forces 
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may not be able to be detected by either DigiGaitTM or CatWalkTM (Guillot et al., 

2008). 

In addition, both DigiGaitTM and CatWalkTM only provide a series of gait 

parameters to the users (Bozkurt et al., 2008). It depends on the user how the 

parameters are to be handled. Nevertheless, most users wish to know if a tested 

animal has a certain disease and do not desire to examine multiple numbers of gait 

parameters.  Neither DigiGaitTM nor CatWalkTM can provide such detection. Guillot et 

al. (2008) reported that a computerized gait analysis system or DigiGaitTM was unable 

to consistently identify motor problems in MPTP-treated mice, despite a 90% deficit 

of striatal dopamine content. In addition, the same gait analysis system could not 

distinguish SOD1-G93A, a mouse model of ALS, from controls up to 84 days of age.  

1.2 Objectives and Specific Aims 

Many experimental studies proved that gait analysis is an effective method for 

preliminarily analyzing gait impairments (Lin et al., 2008; Gabriel et al., 2007). 

However, there are still challenges neuroscientists and engineers are faced with when 

this approach is implemented. The model to calculate the probability of a tested 

animal has a neurological disorder is not available. Thereby, it is difficult to provide a 

yes/no result. An effective way to find the “proper” locomotion parameters that 

constitute biomarkers of the disease one investigates has not yet been found. The 

research in this dissertation focuses on providing better methodology for performing 

gait analysis. 

The main objective of this work is to detect neurological and neuromuscular 

diseases in an early stage by using an in house Gait Analysis System (GAS) in 
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laboratory rats. There are three specific aims:  

(1) Improve the hardware and software (Moubarak, 2007) of an in house gait 

analysis system developed for equines by Keny (2005). 

(2) Develop an effective methodology to detect gait impairments. 

(3) Test the developed methodology by running a series of laboratory experiments.  

1.3 Dissertation Overview 

This dissertation contains six chapters written in a chronological order following 

the performance of the work. Chapter 2 describes the developed methodology to 

detect gait abnormalities, including hardware, software (Tasch et al., 2008) and 

statistical methods. Chapter 3 describes the experiment to distinguish SOD1-G93A 

rats from the control (Tang et al., 2009a). Chapter 4 is based on the hypothesis that 

the severity of an injury can be assessed by using the gait analysis system (Tang et al., 

2009b). Chapter 5 describes an experiment in which (Tang et al., 2010) rats injected 

with 6-OHDA to model Parkinson's disease. At last, Chapter 6 summarizes the results 

presented in the preceding chapters along with future work and proposed further 

research. 
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Chapter 2: Methodology 

An in house Gait Analysis System (GAS) was set up to measure Ground Reaction 

Forces (GRFs) and spatial limb positions associated with individual limbs through the 

synchronization of load-cell records and video images. Three logistic regression 

models are derived to predict ALS disease, to test the recovery of injury, and to detect 

the outcome of Parkinson’s disease using Locomotion Parameters (LPs) (Tang et al., 

2009a, 2009b, 2010). By calculating the probability of a tested animal being a 

diseased one and setting the cutoff value, a clear picture can be attained whether the 

tested animal has a disease or not.  

2.1 Gait Analysis System 

GAS was originally designed by Keny (2005) and the corresponding software was 

developed by Moubarak (2007). GAS can measure GRFs of vertical, longitudinal, 

and transverse directions measured by fourteen load-cells: eight load-cells measure 

vertical GRF components (Z), two load-cells measure longitudinal GRF components 

(Y) and four measure transverse GRF components (X). The software that records the 

data from the fourteen load-cells and the software for analyzing the forces have been 

improved by the author. The hardware and the developed software records and 

analyzes GRF and spatial (longitudinal and transverse) limb positions data of a 

walking laboratory rat.  
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Figure 2.1 A gait analysis system for rodents. The system measures LPs in 4 domains: 
force, space, time, and frequency. The measured forces are in vertical, longitudinal, 

and transverse directions. A video camera records bottom images of the rat that walks 
through the system, and through synchronization of the video images and load cell 

signals, one can recognize the ground reaction forces of each individual limb. 
 
 

The GAS went through several enhancements. First, it was mounted on a steel 

cart to improve its mobility (see Figure 2.1). Second, two highly sensitive load-cells 

(Transducer Techniques, 150 grams #206757) were mounted to measure the 

longitudinal GRF components. Third, a digital video camera (Sony, DMK 31BF03) 

was installed on the bottom shelf to record the bottom view of the walking rats. To 

control the lighting, two arrays of infrared LEDs were set up on the edge of the sensor 

module plates (Tasch et al. 2008). The two plates of the floor were shortened and the 

entrance and the exit plates were extended. In addition, the material of the floor was 

changed from Aluminum to transparent plastic (Plexiglas). The locations of the two 

load-cells that measure longitudinal GRF components were changed from the center 

to the two sides. These enhancements resulted in a GAS that records video images as 

well as vertical, longitudinal, and transverse GRFs and spatial (longitudinal and 
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transverse) limb positions of walking rats. The load-cell data is collected at a rate of 

200 Hz and the video is recorded at 30 frames per second. 

 

Figure 2.2 The new version of data collection software for gait analysis system 
programming by LabVIEW®. Forces data and the video data start to be collected at 
the same time when the data collection software is run. As soon as the software is 

stopped, there will be two files created in a specific folder automatically, which store 
force data and video images. 

 

The video collection unit was added to the data collection software by using a 

LabVIEW® 8.5 program (see Figure 2.2). The GRF and the video data start to be 

collected at the same time when the data collection software is clicked to run. As soon 

as the software is stopped, two files are automatically created in a specific folder: one 

is a “.txt” file which is used to store GRF data and the other one is an “.avi” file that 

stores video images. A screen, a frequency meter, and some other function blocks 

were added to the front panel of the data collection software. This control panel aids 

the user in observing how the rat walks through the system. 
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Figure 2.3 A typical output generated by the GAS from a typical test run.  The 
signatures of the left and right limbs are depicted on the left and right sides.  The 

transverse (Fx), longitudinal (Fy), and vertical (Fz) are normalized with respect to the 
rat’s body weight and plotted as a function of time (s).  The longitudinal (Y) and 

transverse (X) limb positions are normalized with respect to the length and width of 
the floor plates, respectively. A video image of the bottom of the rat is also recorded. 

 

The data analysis software has also been modified. A display that can play images 

recorded by the data collection software was added to the front panel of the data 

analysis software (see Figure 2.3), and a corresponding program was added to the 

block diagram. The images and GRF data were synchronized to achieve a better 

understanding of how a rat walks through the GAS. Four cursors (see Figure 2.4) 
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were also synchronized in Fz and Y positions both left and right sides. The video can 

be played forward and backward by moving the cursors. The output signals of the 

fore and hind limbs are designated by dashed and solid lines, for both left and right 

floor plates. The processed system outputs (see Figure 2.5) allow the user to associate 

the system outputs with individual limbs, and to calculate numerous LPs that 

characterize the locomotion of a rat through each limb for every test run. 

 

Figure 2.4 To associate a load-cell signature with a limb, the computer mouse is 
placed on a selected signature (vertical marker); and the most recent video image is 
displayed.  The load-cell signature on the right from 0.36 to 5.0 s is associated with 

the right fore limb. 
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Figure 2.5 The load signatures generated by a single limb are identified and 
following the procedure shown in Figure 2.4, the fore and hind limbs are marked with 

dashed and solid heavy lines, respectively. 

2.2 Locomotion Parameters (LPs) 

From the signals of the 14 load cells, the values of 20 LPs per limb were evaluated 

for the Left Fore (LF), Right Fore (RF), Left Hind (LH), and Right Hind (RH) limbs. 

The 20 LPs, listed in Table 2.1, are non-dimensional except to Stance Time, Fzw and 

Fy which have dimensions of s, 1/s, and 1/s, respectively. 
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Table 2.1 Definitions of the 20 LPs evaluated in this dissertation. 

No. Variable Units Definition 
1 Fzmax Non-dimensional Maximum value of the vertical GRF component of a selected limb 
2 Stance Time sec Time duration that a selected limb is in contact with the floor 
3 T_Fzmax Non-dimensional Time of Fzmax normalized by the Stance Time of a selected limb 

4 Fzmean Non-dimensional 

The mean value of the vertical GRF component of a selected limb 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ⋅∫
ceTimeS

dtFz
TimeS
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5 Fzw　 1/sec 

The Fourier transform of Fz summed over the first 50 Hz for a selected 

limb ⎥
⎦

⎤
⎢
⎣

⎡
⋅∫

50

ωdFz  

6 Stride Non-dimensional 
Stride length of a selected limb calculated as the difference between two 
consecutive contact positions; the contact positions are normalized by the 

floor length, which is 13.25 inch 
7 Fymax Non-dimensional Maximum value of the longitudinal GRF component of a selected paw 
8 T_Fymax Non-dimensional Time of Fymax divided by Stance Time 
9 Fymin Non-dimensional Minimum value of the longitudinal GRF component of a selected paw 
10 T_Fymin Non-dimensional Time of Fymin divided by Stance Time 

11 Fymean Non-dimensional 

The average value of the longitudinal GRF component of a selected paw 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣
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ceTimeS

dtFy
TimeS
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12 Fyw　 1/sec 

The Fourier transform of Fy summed over the first 50 Hz for a selected 

paw ⎥
⎦

⎤
⎢
⎣

⎡
⋅∫

50

ωdFy  

13 Fxmax Non-dimensional Maximum value of the transverse GRF component of a selected paw 
14 Fxmin Non-dimensional Minimum value of the transverse GRF component of a selected paw 

15 Fxmean Non-dimensional 

The average value of the transverse GRF component of a selected paw 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣
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ceTimeS

dtFx
TimeS

tan
.  

 

16 FyP Non-dimensional The mean value of the propelling (positive) longitudinal force of a selected 
limb 

17 FyB Non-dimensional The mean value of the braking (negative) longitudinal force of a selected 
limb 

18 NP Non-dimensional The number of samples in which the longitudinal force is propelling 
(positive in value); the sampling rate is 200 Hz 

19 NB Non-dimensional The number of samples in which the longitudinal force is braking (negative 
in value); the sampling rate is 200 Hz 

20 NPB Non-dimensional The number of times in which the longitudinal force switches sign from 
braking to propelling and vise versa 
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2.3 Logistic Regression Model 

In an earlier work Rajkondawar et al. (2002) addressed modeling of bovine 

lameness, using a logistic regression to evaluate lameness predictions of dairy cattle. 

Logistic regression model (Hosmer and Lemeshaw, 2000) has been used to predict 

the probability that an examined rat belongs to the diseased mutant group in terms of 

the LP. The model is expressed mathematically as: 

( )
( )∑
∑

⋅++
⋅+

=∈
ii

ii

LP
LP

P
ββ

ββ

0

0

exp1
exp

)group  diseased rat  a(  , (2.1) 

where 0β  is the intercept and iβ  is the i-th coefficient of the logistic regression 

model and is estimated by appropriate statistical methods. Liu et al. (2009) 

demonstrated that the accuracy of the predictions of such models is significantly 

improved when the LPs are transformed via spline transformations. An 

implementation of these transformations is available in SAS (PROC TRANSREG) 

(SAS Institute Inc., 2004). The probability that a rat belongs to the diseased mutant 

group is hence evaluated as: 

( )
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∑
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0
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exp

)group diseased rat  a(  , (2.2) 

where iTLP  is the transformed value of iLP . 

2.4 Animal Protocols 

All protocols described in this study were approved by IACUC at the University 

of Maryland, Baltimore County and the University of Maryland, School of Medicine.  
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At the end of our experiments, animals were euthanized by sodium pentobarbital 

injection (150 mg/kg IP). 
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Chapter 3: Measuring Early Pre-symptomatic Changes in 

Locomotion of Rodent Models of SOD1-G93A- a Rodent 

Model of Amyotrophic Lateral Sclerosis 

3.1 Introduction to the Rodent ALS Models 

This chapter demonstrates that to differentiate SOD1-G93A mutant rat, a model 

of Amyotrophic Lateral Sclerosis (ALS), from a Sprague Dawley (SD) control rat at a 

pre-symptomatic stage, one has only to use 7 key parameters. The 7 parameters are 

biomarkers of ALS and their transformed values are used as explanatory variables of 

a logistic regression model. The model predicts the probability that the examined rat 

belongs to the SOD1-G93A group. This model differentiates faultlessly between the 

SOD1 and control groups from the very first time rats, 51 days of age, walked 

through the system. The system provides a new paradigm for ALS diagnosis and it 

can have a significant impact on the development of new therapeutic procedures for 

this ailment. It is further possible to address the development of therapeutic 

procedures for other neurological diseases that affect gait. 

ALS is a serious neurodegenerative disease that affects almost selectively motor 

neurons (Galan et al., 2007). ALS is also called Lou Gehrig’s disease and is very 

difficult to diagnose in the early stages because the symptoms are similar to those of 

other, often treatable, neuromuscular disorders where neurodegeneration does not 

occur. The diagnosis of ALS is usually based on a complete neurological examination 

and various clinical tests. Since the initial symptoms of ALS are unremarkable, the 

disease is often undetected in its early stages. However, as more motor neurons fail, 
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the muscles controlled by them stop functioning normally. Eventually, the muscles 

weaken and become paralyzed and, in most cases, a respiratory failure is the cause of 

death. 

At the present time, there is no effective treatment for ALS. This is due in part to 

the motor neurons’ degeneration and the contributions of other cells, known as glia, 

towards their demise. Current treatments help control the symptoms but they do not 

stop the progression of the disease or cure it. Furthermore, the search for new 

therapeutic procedures has been hindered by the lack of early and reliable diagnosis.  

Early detection of ALS is essential for both identifying appropriate candidate animals 

for inclusion in the treatment group and monitoring the progress and efficacy of the 

treatment. Thus, early detection and the ability to assess the progression of the disease 

are critical for the development of new and effective therapeutic treatments for ALS. 

Laboratory animal models have been used to study the progression of ALS in rats 

and mice. SOD1-G93A rats (Howland et al., 2002) have been accepted as animal 

model for ALS due to their similarities to human ALS symptoms, including muscle 

weakness, weight loss, chewing reflex, paralysis, and breathing difficulties. 

Researchers have investigated motor symptoms that detect ALS early. Kafkafi et 

al. (2008) reported that a Pattern Array for data mining of movement distinguishes 

control SD rats from SOD1-G03A mutant rats. The former exhibit heavy breaking 

when moving along an arena wall and turning away from it, whereas the SOD1-G93A 

mutants fail to exhibit this behavioral pattern. According to Kafkafi et al. (2008), 

these symptoms may enable researchers to test therapies that address intervention 

rather than remediation. 
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This chapter describes a quantitative method to detect the presence or absence of 

locomotion dysfunction in a rodent model of ALS. The diagnosis is based on a 

number of LPs generated at each stride of every limb as the animal walks freely 

through a narrow passage to get food placed at the system exit. Using several 

repeated walks of animals with known disease conditions, we build predictive models 

for ALS in terms of LPs that have been transformed through spline transformations 

(Liu et al., 2008). The transformed LPs are used as explanatory variables of a logistic 

regression model for the probability that the examined rat belongs to the SOD1-G93A 

mutant group.  

The GAS (see Figure 2.1), described in the Chapter 2, can measure numerous 

locomotion parameters for every test run. In this chapter 110 locomotion parameters 

per animal per run are evaluated for their ability to identify the presence of the 

disease. For each LP, we explore a nonlinear transformation based on spline functions, 

which best predict the presence of ALS. It is demonstrated that in order to classify 

SOD1-G93A rats correctly one has to measure only 7 very particular LPs per limb. It 

turns out that the system is capable of distinguishing between the SOD1 mutants and 

control SD animals correctly from the very first time the animal crosses the system. 

3.2 Materials and Methods 

3.2.1 Obtaining Gait Measurements for the ALS Experiment 

Four SOD1-G93A mutant and four Sprague-Dawley (SD) control rats from 

Taconic Laboratory (Germantown, NY) participated in the study. The rats were all 

males and 4 weeks old upon their arrival on Jan 7, 2008. Each rat was housed in a 

separate cage with inversed darkness/lighting cycle and food and water ad libitum. 
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After weighing the animal it was placed at the system entrance, the gate was opened, 

and the rat crossed the system moving toward its individual cylindrical toy and a treat 

of condensed milk, both of which were placed at the system exit. This procedure was 

repeated up to 3 times for each rat on a single day. After a period of 10 days of 

training and adaptation to the system, each animal was tested twice per week and data 

was recorded from January 30, when the rats were 51 days old, through March 24, 

2008 or until the rats were 105 days of age. The database contained 163 test runs, 

where 96 records were from SOD1 mutants and 67 from control SD rats. 

3.2.2 Logistic Regression 

In the Chapter 2, the logistic regression model was introduced. In the current 

chapter, logistic regression models are used to predict the probability that an 

examined rat belongs to the SOD1-G93A mutant group in terms of the LPs. This is 

expressed mathematically as: 

( )
( )∑
∑

⋅++
⋅+
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ii
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P
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ββ

0

0

exp1
exp

)group  SOD1 rat  a(  ,  (3.1) 

where the βi is the i-th coefficient of the logistic regression model and is estimated by 

appropriate statistical methods. 

3.2.3 Cross Validation 

Leave-One-Out (Efron and Tibshirani, 1993; Hjorth, 1994) method of cross 

validation was used to evaluate the performance of the derived ALS models. A single 

test run from the original sample is taken as the validation data, and the remaining 
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test runs are taken as the training data. This procedure is repeated 163 times until 

every test run in the database is used once as the validation data.   

3.3 Results of the ALS Experiment 

A typical output of a single test run is depicted in Figure 2.3. These outputs are 

recorded from an array of fourteen load cells that support the left and right floor 

plates of the system sensor module, as described in Tasch et al. (2008). Vertical (Fz), 

longitudinal (Fy), and transverse (Fx) GRF components, as well as longitudinal (Y) 

and transverse (X) limb positions, are plotted versus time (s) for both left and right 

floor plates. In addition, bottom images of the walking rat are recorded by a video 

camera. Fz, Fy, and Fx are normalized with respect to the animal’s body weight, and 

the longitudinal (Y) and transverse (X) limb positions are normalized with respect to 

the length and width, respectively of the sensor module floors. Thus Y = 0 denotes the 

entrance, and Y = 1 denotes the exit, where X = 0 denotes the center line and X = 1 the 

far edge (see Figure 2.3).  

At any time the left and right floors can be in contact with one, two, or no limbs.  

When a single limb is in contact with the floor plate, we synchronize the load cell 

outputs that are recorded at 200 Hz, with the most recent video image recorded at 30 

fps. This enables us to verify the association between an individual limb and a 

recorded force signature. Figure 2.4 demonstrates that the output signatures of the 

right floor plate during the time period of 0.36 to 0.5 s are generated when the right 

fore limb is in contact with the right floor plate. Similarly, one can associate the other 

limbs with the load cell signals they generate. Thus each fore and hind limb is 

designated with dashed and solid lines, respectively (Figure 2.5). This enables one to 
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calculate numerous LPs that characterize the locomotion of a rat through each limb 

for every test run. 

Table 2.1 lists the 20 LPs that were evaluated for every limb in this chapter. The 

list includes gait parameters that characterize the vertical (Fz), longitudinal (Fy) and 

transverse (Fx) forces, as well as parameters that are associated with time, stride, and 

frequency (Fz, and Fy). In addition to the 20 LPs, listed in Table 2.1, we derived 

parameters that capture symmetry between the left and right sides of the animal.  This 

is based on the hypothesis that control rats exhibit left/right LP symmetry.  Symmetry 

of any locomotion parameter is defined as: 

rightleft

rightleft

LPLP
LPLP

LPSym
+

−
=_ .    (3.2) 

Equation (3.2) can be applied to any of the 20 LPs listed in Table 3.1. Symmetry 

can be evaluated for the hind ( HLPSym _ ) or the fore ( FLPSym _ ) limbs. The 

symmetry factors, listed in Table 3.1, were evaluated for the fore and hind limbs in 

this chapter. 

The 20 LPs, listed in Table 2.1, were evaluated for LF, RF, LH, and RH limbs and 

the symmetry factors, listed in Table 3.2, were evaluated for the forelimbs and hind-

limbs for every test run of the 4 control and 4 SOD1-G93A rats. A typical data for a 

single test run contained values of 110 parameters, as depicted in Table 3.2.  
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Table 3.1 Definitions of 15 symmetry factors. 
No. Variable Units Definition 

1 Sym_Fzmax Non-dimensional The Symmetry factor of Fzmax  

2 Sym_Stance 

Time 

Non-dimensional The Symmetry of Stance Time 

3 Sym_T_Fzmax Non-dimensional The Symmetry of T_Fzmax 

4 Sym_Fzmean Non-dimensional The Symmetry of Fzmean 

5 Sym_Fzw　 Non-dimensional The Symmetry of Fzw　 

6 Sym_Stride Non-dimensional The Symmetry of Stride  

7 Sym_Fymax Non-dimensional The Symmetry of Fymax 

8 Sym_T_Fymax Non-dimensional The symmetry of T_Fymax 

9 Sym_Fymin Non-dimensional The symmetry of Fymin 

10 Sym_T_Fymin Non-dimensional The symmetry of T_Fymin 

11 Sym_Fymean Non-dimensional The symmetry of Fymean 

12 Sym_Fyw　 Non-dimensional The symmetry of Fyw　 

13 Sym_Fxmax Non-dimensional The symmetry of Fxmax 

14 Sym_Fxmin Non-dimensional The symmetry of Fxmin 

15 Sym_Fxmean Non-dimensional The symmetry of Fxmean 
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Table 3.2  Numerical values of the 20 measured LPs for each (LF. RF. LH. RH) 
limbs and the 15 symmetry factors for fore and hind limbs for a control rat #107. 

Locomotion 

Parameter 

(LP) LF RF LH RH Sym_LPF Sym_LPH

Fzmax 0.7398 0.8116 0.7357 0.7254 -0.046 0.007 

Stance time 

[sec] 0.1550 0.1400 0.2900 0.1750 0.051 0.247 

T_Fzmax 0.3226 0.7500 0.2241 0.2857 -0.398 -0.121 

Fzmean 0.5288 0.5260 0.4221 0.3918 0.003 0.037 

Fz 　[1/sec] 0.5326 0.5280 0.5194 0.4605 0.004 0.060 

Stride 0.3463 0.7202 0.4133 0.6818 -0.351 -0.245 

Fymax 0.1517 0.3986 0.0178 0.3771 -0.449 -0.910 

T_Fymax 0.8710 0.1786 0.5172 0.4571 0.660 0.062 

Fymin -0.4292 -0.1286 -0.1237 -0.0805 0.539 0.211 

T_Fymin 0.2258 0.5714 0.1207 0.2857 -0.434 -0.406 

Fymean -0.1504 0.0948 -0.0384 0.0660 4.411 -3.779 

Fy　[1/sec] 0.2769 0.2621 0.0842 0.2377 0.027 -0.477 

Fxmax 0.0493 0.1102 0.1040 0.1944 -0.381 -0.303 

Fxmin -0.0462 -0.0610 0.0231 0.0163 -0.138 0.175 

Fxmean -0.0005 0.0201 0.0661 0.1093 -1.048 -0.246 

FyP 0.0829 0.0111 0.0188 0.0029 

FyB -0.1936 -0.0440 -0.7466 -0.1794

NP 5 6 22 23 

NB 27 53 7 13 

NPB 5 2 5 1  
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In an effort to rank the 20 LPs and 15 Symmetry factors, we examined the 

effectiveness of each individual parameter, to classify correctly the rats into the 

SOD1-G93A mutant and control groups. Using previous modeling experience, we 

transformed the LPs by following the procedures introduced in Liu et al. (2008), and 

Neerchal and Tasch (2008). The misclassification rate improved remarkably when 

transformed LP (TLP) was used (see Table 3.3). Therefore, we explored the idea of 

transforming the LP variables using nonlinear transformations (TLP) to improve the 

prediction performance of the model. One such family of nonlinear transformations is 

obtained by expanding each LP in terms of a spline basis (Schumaker, 2007). The 

misclassification performance of each individual TLP ranged from 18.4 to 39.9%, 

where FyB had the best performance, and the Symmetry factor of the Stride 

(Sym_Stride) had the worst (see Table 3.3). 

Lastly, when the logistic regression model is based on the transformed values of 

the top 7 variables listed in Table 3.3 (FyB, T_Fymax, Fymax, Fzw, Fzmean, Fyw, 

and NP), the range of probabilities that a control rat belongs to the SOD1-G93A 

mutant group is from 0.000 to 0.002, and the range of probabilities that an SOD1-

G93A mutant belongs to the SOD1 group is from 0.998 to 1.000 (see Figure 3.1). 

Hence, the 7-variable model has no overlap between the SOD1-G93A mutant and the 

control groups, and its performance turns out to be excellent from the very first test 

run of the 4 SOD1-G93A mutants and 4 control SD rats (see Figure 3.2). 
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Table 3.3 Misclassification rates, in percentage, obtained by using a single LP or 
its associated transform TLP. 

Locomotion 
Parameter LP 

Misclassification Rate of 
LP (%) 

Misclassification 
rate of  

TLP(%) 
FyB 34.0 18.4 

T_Fymax 33.1 20.3 
Fymax 40.5 24.5 
Fz　 41.7 25.2 

Fzmean 40.5 25.8 
Fy　 37.4 25.8 
NP 38.6 25.8 

Fxmax 41.7 25.8 
Fzmax 42.3 26.4 
FyP 41.2 26.4 

T_Fymin 39.3 27.0 
Stance time 36.2 27.6 

Fymin 38.7 27.6 
Fymean 36.8 27.6 
Stride 40.5 28.2 
Fxmean 36.6 28.2 

NB 38.6 28.2 
Sym_Fxmin 41.1 28.8 

T_Fzmax 40.5 28.8 
Sym_T_Fymax 41.3 29.5 

Sym_Fxmax 41.7 31.9 
Sym_Stance time 38.0 32.5 

Fxmin 42.3 32.5 
Fy　 40.5 33.1 

Sym_T_Fzmax 41.5 33.7 
Sym_Fymax 41.1 33.7 

NPB 41.8 33.7 
Sym_Fzmean 37.4 34.4 
Sym_Fzmax 42.3 35.0 

Sym_T_Fymin 42.0 35.0 
Sym_Fymean 40.5 35.0 
Sym_Fz　 36.4 35.6 

Sym_Fxmean 38.7 35.6 
Sym_Fymin 42.0 38.7 
Sym_Stride 41.7 39.9 
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Figure 3.1 The range of predicting probabilities that the examined rat belongs to the 
SOD1-G93A group. Note large spread and big overlap between the control and 

SOD1-G93A groups when 1 Variable is used. When 4 Variables are used the overlap 
between the two groups shrinks a little, nevertheless when a 7-variable model is used 

there is an almost complete separation between the control and the SOD1 groups. 
This separation enables us to classify the rats correctly in each and every test run. 
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Figure 3.2 Probability of ALS for 4 SOD1 and 4 control rats vs. days for the animals 
that traversed through the noninvasive diagnostic system. Note that P (ALS) for 

SOD1 and control rats are close to 1.0 and 0.0, respectively, in all days except for a 
single day for rat #4. 
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3.4 Discussion of the ALS Experiment 

This chapter demonstrates that a logistic regression model with the “proper” 

explanatory locomotion variables can differentiate between SOD1-G93A mutant and 

control SD rats from the very first time the examined rats cross a locomotion analysis 

system, and the resultant classification is excellent. The ability to detect neurological 

diseases early will allow researchers to test intervention therapies and hopefully to 

find cures to serious diseases that currently incurable.  

The selection of the number of locomotion parameters (LPs) used to construct a 

logistic regression model was based on the misclassification performance of each 

individual variable. Since the misclassification rate of the eighth variable is 25.8% 

which is the same as the values of the fifth through the seventh variables (see Table 

3.3), we cannot justify the discrimination against the eighth variable (Fxmax). 

Nevertheless, from an engineering point of view, the measurements of 8 LPs require 

14 load cells, whereas 7 LPs require only 10 load cells, which are preferred from 

system cost considerations.   

Sweets (condensed milk) and individual cylindrical toys that are placed at the exit 

platform were used to encourage the rats, in the current system design, to walk 

through the system. Rats walk through the system at their own pace and will. This 

explains the discrepancies in the number of test runs for different rats. It is apparent 

that rats #102 and #106 do not walk as often as their test mates rats #103, #104, #105, 

#107, #108, or #109 (see Figures 3.2).  



www.manaraa.com

 

 36 
 

In this chapter we examined 4 SOD1-G93A mutant and 4 SD control rats. 

Obviously, the database consists of several repeated observations. It is well known 

that repeated observations from the same rat may be correlated. Correlated 

observations usually do not affect the predictions adversely, but they cause the 

corresponding prediction errors to be under-estimated. The current study 

demonstrates the feasibility of the approach however a much larger study with larger 

number of rats is needed. We plan to use the results of this chapter as a basis for a 

power study to investigate sample size issues. Obviously, one needs to repeat the 

experiments with larger populations. Nevertheless, the analysis presented here is not 

based on visualization of gait abnormalities, as all the SOD1-G93A animals were pre-

symptomatic. It has been demonstrated that the earliest change in locomotion is at the 

neuromuscular junction where there is a process of denervation and re-innervation 

occurring before any changes in the number of lower motor space neurons have 

occurred (Fischer et al., 2004). 

It can be hypothesized that various other neurological diseases that affect gait, 

such as Parkinson, Huntington, and Multiple Sclerosis, could also be detected in 

laboratory animal models using the same methodology. The key will be to find the 

“proper” LPs that constitute biomarkers of the disease one investigates. Furthermore, 

various pattern recognition strategies can be employed to develop diagnostic tools for 

other neurological diseases.  
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Chapter 4: Gait Analysis of Locomotory Impairment in Rats 

Before and After Neuromuscular Injury  

4.1 Introduction to the Locomotory Impairment 

We used GAS described in chapter 2 to measure the changes in locomotion 

parameters of adult Sprague-Dawley rats after neuromuscular injury, induced by 

repeated large strain lengthening contractions of the dorsiflexors muscles. We 

developed a logistic regression model from test runs of control and permanently 

impaired (denervation of the dorsiflexor muscles) rats and used this model to predict 

the probabilities of locomotory impairment in rats injured by lengthening contractions. 

The data showed that GAS predicts the probability of locomotory impairment with 

very high reliability, with values close to 100% immediately after injury and close to 

0% after several weeks of recovery from injury. The 6 transformed locomotion 

parameters most effective in the model were in 3 domains: frequency, force, and time. 

We conclude that application of the GAS instrument with our predictive model 

accurately identifies locomotory changes due to neuromuscular deficits. Use of this 

technology should be valuable for monitoring the progression of a neuromuscular 

disease and the effects of therapeutic interventions. 

Rats and mice have become increasingly important for modeling human diseases 

and have provided many insights into pathogenic mechanisms (Durbeej and Campbell, 

2002), but assessment of the phenotypic changes in rodent models is sometimes 

difficult. In many cases, severe measures, often involving terminal experiments, are 

required to detect phenotypical changes including harvesting of tissue to assess 
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histological changes or for in vitro studies (DelloRusso et al., 2001; Durbeej and 

Campbell, 2002; Hamer et al., 2002). Since many diseases of the nervous and 

musculoskeletal systems result in impaired locomotion, non-invasive measurement of 

locomotion parameters (LP) could provide new insights into these diseases as well as 

facilitating longitudinal studies of their progression and treatment. 

We have described a system that uses load cells and video technology to assess 

quantitatively the gait of rats. The GAS (Tasch et al., 2008) is capable of measuring 

20 different parameters of locomotion and provides a non-invasive measure of 

locomotion in individual rats over time. The sketch of GAS is shown in Figure 4.1. 

We recently used it to distinguish differences in gait between control and SOD1-

G93A rats, a model of amyotrophic lateral sclerosis in man, at pre-symptomatic 

stages (Tang et al., 2009b). Here we test the hypothesis that our quantitative 

measurements can detect changes in gait that are induced by permanent impairment 

of function of a single lower hind limb, and further, that it can detect subtle changes 

in gait, linked to the partial and temporary loss of muscle function. 

 

Figure 4.1 A schematic of the gait analysis system for rodents. The system measures 
locomotion parameters in 4 domains: force, space, time and frequency. The measured 

forces are in vertical (Z), longitudinal (Y) and transverse (X) directions. The 
locomotion parameters feed a statistical model that calculates the probability that a 

rodent displays locomotion impairment. 
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4.2 Methods and Materials 

4.2.1 Associating Segments of Load cell Signals and Limbs 

Figure 4.2 shows load cell signals during the time period of 0.63 to 0.79 s 

generated when the RF limb is in contact with the right floor plate. We can associate 

the other limbs with the signals from the load cell signals that they generate similarly. 

By designating each fore and hind limb with dashed and solid lines, respectively 

(Figure 4.3), we can calculate numerous LPs that characterize the locomotion of a rat 

through each limb for every test run. 

 

Figure 4.2 To associate load cell signatures with a limb the computer mouse is placed 
on a selected signature (vertical red marker) and the most recent video image is 
displayed. The load cell signature on the right floor-plate from 0.63 to 0.79 s is 

associated with the right fore limb. 
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Figure 4.3 The load signatures generated by a single limb are identified and the fore 

and hind limbs are marked with dashed and solid heavy lines, respectively. 
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4.2.2 Obtain Gait Measurements for the Locomotory Impairment Experiment  

Ten male, Sprague-Dawley rats (46 days old) from Charles River Laboratories 

(Shrewsbury, MA) were used in the study. Each rat was housed in a separate cage 

with darkness/lighting cycle, 12 hours on and 12 hours off, and food and water ad 

libitum. The animals were weighed and placed individually at the system entrance 

(Figure 4.1). Upon opening of the gate, the rat crossed the system, moving towards its 

toy and food, placed at the system’s exit. This procedure was repeated up to 3 times 

for each rat on a single day. After 7 days of training and adaptation to the system, 

each animal was tested twice per week. Data were recorded when the rats reached 55 

days of age and for the next 87 consecutive days. 

Permanent neuromuscular damage was introduced to the left hind limb in 5 of the 

10 rats, at the age of 102 days, while the biweekly data recording continued. The 

procedure consisted of cutting the fibular nerve, which innervates the dorsiflexors 

muscles and is easily accessible due to its subcutaneous location at the neck of the 

fibula (lateral knee). Under sterile conditions, the skin was shaved, a small (less than 

1.5 cm) incision was made, and the nerve was identified and cut. To ensure that nerve 

growth did not ensue, we removed a small section (~5 mm) of the nerve. The incision 

was sutured closed and topical antibiotics and analgesics were applied. A record of 

264 test runs (112 test runs of rats with permanent locomotory impairment, and 152 

test runs of control rats) established the training database that we used to derive the 

logistic regression model for rats with locomotory impairment. 

Transient neuromuscular injury was introduced to the left hind limbs at 172 days 

of age in 3 of the 5 remaining rats, used previously as controls, by inducing 8 large-
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strain lengthening contractions to the ankle dorsiflexor muscles based on methods 

previously described, with some modifications (Lovering et al., 2007). This protocol 

resulted in a 44 ± 6% loss of maximal isometric tetanic torque in the dorsiflexors 

muscles immediately after injury. To compare pre and post-injury locomotion, we 

recorded data from one week prior to injury through 5 weeks after injury. A total of 

123 test runs were recorded to establish the testing database, which we used to assess 

the severity of locomotory impairment of the injured rats. 

4.2.3 Assessing the Severity of Locomotory Impairment 

The logistic regression model obtained for control rats and rats with permanent 

neuromuscular damage (denervation) was applied to test the locomotion of rats that 

sustained a transient impairment of muscle function caused by lengthening 

contractions. Using the probability value, we were able to identify deterioration of 

locomotion after the transient injury, as well as improvement during recovery from 

the injury. 

4.3 Results of the Locomotory Experiment 

We used the GAS system (Tasch et al., 2008) to measure 20 different parameters 

of the gait of walking rats, and present vertical (Fz), longitudinal (Fy), and transverse 

(Fx) components of the ground reaction forces (GRF), as well as longitudinal (Y) and 

transverse (X) limb positions, plotted versus time (s) for both left and right floor 

plates, in Figure 4.1. We used images of the walking rat, recorded from below by a 

video camera, to associate particular signals generated by the system with the position 

and activity of individual limbs. Each fore and hind limb is designated with dashed 
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and solid lines, respectively (Figure 4.3), enabling us to calculate the locomotion 

parameters (LPs) associated with the movements of individual limbs for every test 

run. 

Table 2.1 lists the 20 LPs that we evaluated for every limb, for every test run of 

control and permanently impaired (denervated) rats. The numerical values of LPs, 

recorded for a permanently impaired rat and for a control rat, are presented in Table 

4.1. Note the generally lower LP force values of the LH limb, which had been 

denervated by fibular nerve section 12 days prior to the test. 
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Table 4.1 Numerical values of the 20 measured LPs for a permanently impaired 
and control rats. Data of the permanently impaired rat were recorded when the 
denervated rat was 114 days old and 12 days after introducing the permanent 

locomotory impairment. Data of the control rat, recorded at 94 days of age. Note the 
generally reduced force capacity of the LH limb of the denervated rat. Except for 

stance time, Fz and Fy, all other variables are non dimensional. 
Denervated rat – 12 days after being 

introduced to a permanent 

locomotory impairment 

 

Control rat  
Locomotion 

Parameter 

(LP) LF RF LH RH LF RF LH RH 

Fzmax 0.6330 0.6316 0.3628 0.8133 0.7263 0.6801 0.4944 0.5138

Stance time 

[s] 

  

0.1500 0.1650 0.1750 0.3050 0.2950 0.3000 0.8650 0.4350

T_Fzmax 0.4000 0.3939 0.3143 0.2295 0.3220 0.2667 0.7052 0.1609

Fzmean 0.4015 0.4163 0.2161 0.4614 0.3722 0.4157 0.3541 0.4008

Fz 　[1/s] 0.3946 0.4117 0.2452 0.6158 0.6051 0.6505 0.3941 0.3876

Stride 0.4927 0.6649 0.4582 0.5608 0.2381 0.4114 0.0669 0.0676

Fymax 0.0631 0.0405 0.0555 -0.0050 0.2079 0.3047  0.2303 0.1440 

T_Fymax 0.9000 0.6970 0.6857 0.0492 0.3729 0.9500  0.7168 0.0345 

Fymin -0.1906 -0.0012 -0.1433 -0.3142 -0.3030 -0.3995  -0.0887 0.0283 

T_Fymin 0.2333 0 0.0286 0.2787 0.4576 0.3000  0.9653 1.0000 

Fymean -0.0490 0.0232 -0.0351 -0.0668 0.0046 -0.0180  0.0233 0.0823 

Fy　 [1/s] 0.1127 0.0247 0.0953 0.1758 0.2529 0.2345  0.0822 0.1084 

Fxmax 0.0010 0.1322 0.0192 0.1925 0.2225 0.1779  0.0421 0.1726 

Fxmin -0.0892 -0.0150 -0.0534 -0.0025 -0.2698 -0.1282  -0.1132 0.0444 

Fxmean -0.0001 0.0626 0.0006 0.0913 0.0156 0.0691  0.0079 0.1180 

FyP 0.0375 0.0152 0.0338 0 0.1058 0.0956 0.0502 0.0685

FyB -0.1115 -1.0030 -0.0548 -0.0248 -0.0841 -0.0897 -0.0367 0.0000

NP 13 32 8 0 28 31 120 88

NB 18 2 28 62 32 30 54 0

NPB 6 1 2 0 10 3 14 0
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In an effort to rank the effectiveness of the 20 LPs in detecting defects in 

locomotion, we examined the effectiveness of each individual LP to classify the rats 

correctly into permanently impaired and control groups. We transformed the LPs by 

following the procedures introduced in Liu et al. (2009). The classification rate 

improved remarkably when the LPs were transformed using spline transformation 

(Schumaker, 2007), such that the probability of misclassification by the model when 

the top 6 individual transformed LPs (TLPs) were used, ranged from 26.5% to 28.8%. 

Table 4.2 prioritizes the 6 most useful TLPs, one TLP at a time. Fzω was the best 

predictor; and the propulsion duration period (NP) was the worst. 

Table 4.2 Ranking the transformed LPs based on their misclassification performance 
when a single TLP is used at a time. The misclassification rate of the Fourier 

transform of the vertical reaction force, Fzω, is the best with misclassification rate of 
26.5%, and the time duration during which the longitudinal reaction is propelling, NP, 

has the worst performance with misclassification rate of 28.8%. 
TLP Misclassification 

[%] 
Fzω 26.5 

Fymean 26.9 
Fxmin 28.0 
NB 28.0 

Fzmean 28.4 
NP 28.8 

 

When we derived a logistic regression model based on the transformed values of 

the best 1 to 6 TLPs listed in Table 4.2, our ability to identify control versus 

denervated animals from the data alone improved with the number of these variables 

that we used (Figure 4.4). The cutoff value of the probability predictions for the 

control and denervated groups was 0.5. Incorporating a total of 6 variables into the 

model and selecting a probability cutoff value of 0.5 provide specificity and 

sensitivity exceeding 90% in analyses of control and denervated rats (Figure 4.4). 
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Figure 4.4 The range of predicting probabilities that the examined rat has locomotory 
impairment when 1, 2, 3. . . and 6 top performing TLPs (listed in Table 4.2) are used. 
C is control and D is denervated or permanently impaired groups. The cutoff value of 

the probability predictions for the control and denervated groups was 0.5. Note the 
improved specificity and sensitivity of the control (C) and denervated (D) groups, as 

the number of TLPs increases from 1 to 6. 
 

We used the 6-variable model of control and permanently impaired rats to 

calculate the probability of impairment in the locomotion of 3 rats (Figure 4.5), 

injured by a series of large strain lengthening contractions of their ankle dorsiflexors 

in one hind limb. Our functional measurements indicate that the ankle dorsiflexors 

lose ~ 45% of the contractile torque after this form of injury (Lovering et al., 2007). 

Prior to injury, all of the rats demonstrated a probability of impairment in locomotion 

of less than 0.5 (Figure 4.5). Immediately after injury, all 3 injured rats showed a 

probability of impairment in locomotion of about 1. Furthermore, our analysis of 
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probabilities indicated that all 3 rats recovered fully, i.e., their probabilities of 

impairment approached 0 over time, although at different rates (6, 20, and 34 days for 

complete recovery). We conclude that the 6 LPs, determined by our apparatus and 

subjected to spline transformation, can reliably identify rats that have been subjected 

to an injury that partially reduces the efficacy of only one muscle group (the ankle 

dorsiflexors) in a single hind limb. 

 

Figure 4.5 The probability of locomotory impairment of the three injured rats. Large 
strain injury was induced on day 0. The alteration in gait after injury is reflected by 
the high probability of locomotion impairment at day 0. Despite, animal to animal 

variability in gait during the 5 weeks after injury, the probability of locomotion 
impairment for all three animals returned to pre-injury levels by the 34th day. The 

cutoff value of the probability predictions for locomotory impairment was 0.5. The 
vertical bars are the error bars. 
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4.4 Discussion of the Locomotory Experiment 

Analysis of locomotion in rodents can be useful in assessing normal or altered 

neuromuscular function (Clarke, 1991). Measurements of the ground forces applied 

by the limbs during locomotion provide a non-invasive way to assess gait and 

monitor functions of individual limbs in locomoting rats (Muir and Whishaw, 1999). 

Rats with lesions similar to those seen in Huntington's disease show spontaneous 

motor symptoms that include gait abnormalities (Guvot, et al., 1979). These 

abnormalities are not easily detected by eye, but were readily identified and 

quantified by computerized video analysis. Quantitative methods to assess temporal 

and spatial locomotion parameters have been reported (Hamers et al., 2001). Non-

quantitative video-based methods to characterize the effects of nerve injury are also 

available (Walker et al., 1994). These methods assess multiple locomotion parameters, 

but the data they produce have not been used to determine whether a certain type of 

disease or locomotion impairment is present. The GAS records locomotion 

parameters, associates the signals with the placement of individual limbs, and 

assesses the probability that certain locomotion impairment is present. Here we use 

the GAS to establish the parameters associated with gait abnormalities caused by 

denervation of a single limb and to assess, with a high degree of reliability, changes 

in gait that are linked to much milder and reversible injuries. 

Our results show that GAS is an effective tool for evaluating permanent or 

temporary defects in gait consequent to neuromuscular injury. To develop a model 

that could be used effectively to identify changes in gait associated with mild and 

reversible injuries; we first prepared a dataset from rats that we trained to walk 
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through the GAS system. Comparisons of locomotion records of control rats and rats 

with permanent locomotory impairment, caused by denervation of a single hind limb, 

revealed clear differences. After analyzing these differences using spline 

transformation, we generated datasets that we then applied to examine the effects of 

injuries caused by several large-strain lengthening contractions in a single hind limb. 

In particular, we selected 6 parameters from this dataset that were most effective in 

identifying denervated and control rats, which we then applied to the data we 

obtained from the injured animals. 

From this dataset we generated a logistic regression model that predicted the 

probability of locomotory impairment and reliably identified those animals that had 

been mildly and reversibly injured by lengthening contractions. We also used these 

parameters to follow the recovery of gait in individual animals for 5 weeks after 

injury. The ability of the GAS to identify injured animals and to determine when they 

have recovered from the injury, which causes only a ~ 45% loss of function of a 

single group of muscles in one hind limb, suggests that the instrument and the 

analytic methods we have developed are both highly sensitive and reliable.  

Interestingly, despite using an injury model that produces a stereotypical response 

in terms of loss and recovery of contractile torque (Lovering et al., 2007), each 

animal that we tested with the GAS showed a unique time course for recovery of gait. 

This suggests that, similar to humans, factors such as pain and the ability to 

compensate for injury may affect gait in rats. Future studies with the GAS will test if 

therapeutic interventions that reduce pain and inflammation improve gait during the 

days that follow injury from lengthening contractions. 
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Chapter 5: Locomotion Analysis of Sprague-Dawley Rats 

Before and After Injecting 6-OHDA 

5.1 Introduction to the Parkinsonian Models 

This chapter focuses on distinguishing the locomotion of 6-OH dopamine (6-

OHDA) rats from untreated control rats. A 6-OHDA rat is a model of Parkinson’s 

disease and the locomotion is determined by measuring ground reaction forces. This 

chapter tests the hypothesis that changes in measured locomotion parameters can 

noninvasively detect Parkinson’s disease in rats. 

A gait analysis system that measures locomotion parameters of each individual 

limb along with a logistic regression model are used to assess the locomotion 

impairments of Sprague-Dawley rats before and after injecting 6-OHDA into their 

right medial forebrain bundle. The statistical model used 7 locomotion parameters 

that characterize non vertical ground reaction forces and associated time parameters. 

We observed changes in the rats’ locomotion as soon as they walked again 

through the system after recuperating from the surgery. Before the surgery, the 

locomotion of the rats was not impaired, whereas after surgery the six rats 

demonstrated impaired locomotion. The sensitivity and specificity of the 7 

locomotion parameters model is 92% and 95%, respectively. This model calculated 

the predicting probabilities that Parkinson is present prior to and after the injection of 

6-OHDA to be less than 0.34 and more than 0.67, respectively.   

Parkinson’s disease and other neurological ailments that affect locomotion can be 

detected by measuring locomotion parameters that are based on ground reaction 
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forces. The severity of locomotion disorders due to genetic diseases (SOD1-G93A rat 

model of Amyotrophic Lateral Sclerosis), neurotoxin-induced diseases (6-OHDA rat 

model of Parkinson), and injury-induced diseases is compared. 

It has been recently reported that a computerized gait analysis system is unable to 

consistently identify motor problems in MPTP-treated mice, a model of Parkinson’s 

disease (PD), despite a 90% deficit of striatal dopamine content (Guillot et al., 2008). 

In addition it was also found that the same gait analysis system could not distinguish 

SOD1-G93A, a mouse model of ALS, from controls, up to 84 days of age. This 

contradicts our findings (Tang et al., 2009a) where SOD1-G93A rats were 

distinguished from Sprague-Dawley (SD) non-transgenic controls, as early as at 51 

days of age, with sensitivity and specificity of 98% and 99%, respectively. The 

contradiction between the two reports is resolved by paying attention to the two 

distinct gait analysis systems used in the studies. Guillot’s study used a computerized 

treadmill system that utilizes video technology to record multiple locomotion 

parameters (LPs) in the space and time domains; whereas Tang’s study used a system 

that utilizes load cells to records multiple LPs of each individual limb in space, time, 

force, and frequency domains (Tasch et al., 2008). LPs in the force and frequency 

domains were not only crucial for the identification of motor problems in SOD1-

G93A, they were also key parameters in denervation studies (Tang et al., 2009b). We 

sought to determine whether our system of recording and ranking multiple gait 

parameters based upon the values of LPs in four domains would be applicable to 

another model of PD, the 6-OHDA-lesioned rat.  
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This chapter focuses on distinguishing the locomotion as determined by the 

measurement of ground reaction forces between, 6-OHDA rats, a model of PD, and 

untreated control rats. It was reported (Amende et al., 2005) that the stride length was 

significantly shorter and stride frequency was significantly higher in methyl-phenyl-

tetrahydro-pyridine (MPTP) treated mice (a mouse model of Parkinson’s disease) 

when compared to the values obtained from a control mouse.  In another study (Metz 

et al., 2005) found that 6-OHDA rats showed a shuffling gait and short stride lengths 

but in a straight walk, the lesioned animals had normal coupled hindlimb stepping.  

Sudden turns during walking were reported to be impaired in people with 

Parkinson’s disease (Mak et al., 2005), and in another study (Plotnik et al., 2008) 

stated that freezing of gait, in patients with Parkinson’s disease, occurs most 

frequently during turns or step initiation. This was also seen in 6-OHDA-lesioned 

animals (Metz et al., 2005). Sudden turns and step initiation are two tasks that 

demand a high degree of bilateral coordination between the legs (Plotnik et al., 2008), 

nevertheless these tasks also require moderation of ground reaction forces (GRF) 

define that is being overlooked by many researchers. 

5.2 Methods and Materials 

5.2.1 Animal Experiment and Surgery 

Six adult Sprague-Dawley male rats from Taconic Laboratories, USA were used 

in the study. Each rat was housed individually with dark/light cycle, 12 hours/12 

hours, and food and water ad libitum. All animals were treated in accordance 

institutional and federal guidelines. We ran each rat in the gait analysis system up to 3 

times on a single day, twice per week, after 7 days of training and adaptation to the 
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system.  Data were recorded for 30 days for the six rats (10 days before the injection 

of 6-OHDA and 20 days after injection). Rats underwent surgery in which 6-OHDA 

was injected into the right medial forebrain bundle (MFB), following the procedure 

documented in Muir and Wishaw (1999).   

5.2.2 Obtain Gait Measurements for the Parkinsonian Experiment 

The animals transverse through the gait analysis system before the surgery and 3 

days after recovering from the surgery. This protocol was repeated twice per week 

before and after the surgery. A record of 112 test runs of the 6-OHDA rats and 152 

test runs from control rats established the training database (264 test runs totally) that 

we used to derive the logistic regression model for the 6-OHDA rats. A record of 45 

test runs before the surgery and 112 test runs after surgery established the database we 

used for testing the 6-OHDA model. The 7 LPs selected to derive the 6-OHDA model 

are listed in Table 5.1. At the end of our experiments, animals were euthanized by 

sodium pentobarbitol injection (150 mg/kg IP) and perfused with paraformaldehyde 

(4%) for histological analysis.  

Table 5.1 The seven LPs that best distinguish the locomotion of 6-OHDA from 
controls, along with their definitions and misclassification rates. 

LP 
Misclassification 

Rate [%] 

Fymin 23.5 

NP 24.6 

Fxmax 24.6 

Fymean 25.4 

Sym_FyP 28.4 

Fymax 29.2 

NB 30.3 
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5.2.3 Cross Validation of Logistic Regression Model 

Leave-One-Out method of cross validation described in Chapter 3 was used to 

evaluate the performance of the derived 6-OHDA model. A single test run from the 

original sample was taken as the validation data, and the remaining test runs were 

taken as the training data. This procedure was repeated 264 times until every test run 

in the database was used once as the validation data. 

5.3 Results of the Parkinsonian Experiment 

Twenty different LPs were recorded as rats walked through a GAS (Tasch et al., 

2008). The LPs included variables measured in four domains: force, space, time and 

frequency. These LPs were ranked based on their ability to distinguish between the 6-

OHDA-lesioned and control rats, similarly to the method introduced in (Tang et al., 

2009a). The top seven performing LPs, that have the least misclassification errors in 

distinguishing 6-OHDA from control rats, are listed and defined in Table 5.1. The 

seven LPs are associated with transverse and longitudinal ground reaction forces, as 

well as propulsion and braking time durations. 

Figure 5.1 depicts the specificity and sensitivity values of the model when the top 

1, top 2, and up to top 7 LPs (listed in Table 5.1) were used. The cutoff probability 

value was set to 0.5. Note the improved specificity and sensitivity of the 6-OHDA 

model, from (84%, 63%) to (95%, 92%) as the number of LPs increased from 1 to 7. 



www.manaraa.com

 

 55 
 

Figure. 5.1 Sensitivity and specificity versus the number of best performing 
locomotion parameters (LPs) used to model the locomotion of the 6-OHDA lesioned 
rats. Best performing LPs result in the lowest misclassification errors when the cutoff 

value is set to 0.5. Note the improved specificity and sensitivity values (0.84–0.95 
and 0.63–0.92, respectively) as the number of best performing LPs increases from 1 

to 7. 
 

The 7-LP model was used to calculate the predicting probabilities in Figure 5.2 

ten days prior to, and twenty days following the injection of 6-OHDA.into the MFB.  

Note that prior to the injection the probability that the rats had gait abnormalities was 

less than 0.34, whereas after the injection (day 0, Figure 5.2) the probability of gait 

abnormalities similar to Parkinson’s disease is mostly 1.0 with a minimum value of 

0.67.   
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Figure 5.2 The probability that a rat is parkinsonian for the six rats, 10 days prior to 
and 20 days post-operation. Each data point is an average of minimum two 

predictions, calculated by the 7-LP model based on leave-one-out method. Note the 
maximum probability value prior to the 6-OHDA lesion is 0.34, and the minimum 

probability value after the operation is 0.67. 
 

Table 5.2 The LPs that best distinguish between the locomotion of rat models of 
ALS, Parkinson and muscular injury. Note that different sets of LPs are required 

for distinguishing SOD1-G93A, 6-OHDA, and injured rats from their 
corresponding controls. 

ALS model Parkinson’s disease model Neuromuscular injury 
model 

SOD1-
G93A 

Misclassification 
Rate of LP[%] 6-OHDA Misclassification

Rate of LP[%] 
Muscular 
Injury 

Misclassification
Rate of LP[%] 

FyB 18.4 Fymin 23.5 Fzw 26.5 
T_Fymax 20.3 NP 24.6 Fymean 26.9 

Fymax 24.5 Fxmax 24.6 Fxmin 28.0 
Fzw 25.2 Fymean 25.4 NB 28.0 

Fzmean 25.8 Sym_FyP 28.4 Fzmean 28.4 
Fyw 25.8 Fymax 29.2 NP 28.8 
NP 25.8 NB 30.3   
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Another interesting observation is depicted in Table 5.2. We have used the gait 

analysis system to derive predictive models of three different diseases: 

(i) Parkinson’s disease using the 6-OHDA rat model,  

(ii) neuromuscular injury induced by repeated large-strain lengthening 

contractions of the dorsiflexor muscles (Tang et al., 2009b), and 

(iii) ALS using the SOD1-G93A rat model (Tang et al., 2009a). 

Table 5.2 lists the different sets of top performing LPs that best distinguished 

between the locomotion of the 6-OHDA, injured, and SOD1-G93A rats to the 

locomotion of their corresponding controls. Note that each condition has a different 

set of best performing LPs, which suggests the LPs listed in Table 5.2 to be 

locomotion biomarkers of 6-OHDA, nerve injured, and SOD1-G93A rats.  

5.4 Discussion of the Parkinsonian Experiment 

The seven top performing LPs of the 6-OHDA rats are associated with 

longitudinal and lateral GRF components only. Variables derived from the vertical 

GRF component were not included in the model. This is especially relevant to 

Parkinson’s disease since in advanced stages of Parkinson’s disease, patients are 

known to drag or shuffle their feet.  

It has been demonstrated in the neuromuscular injury study that the predicted 

probability decreased as the severity of the injury diminished (Tang et al., 2009b). 

The current study demonstrated the opposite condition i.e., that the probability of PD 

increased after introducing the 6-OHDA lesion on day 0. Thus it has been shown that 

the predicted probability measure reflects the severity level of a disease and it will 

increase or decrease to reflect the progression of a disease or its recovery.   
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The LP with the least misclassification rate across the three diseases of ALS, 

Parkinson, and neuromuscular injury is the braking force (FyB) with a value 18.4% 

for ALS. Indeed, the specificity and sensitivity of the ALS 7-LP model has the highest 

values of 98% and 99%, respectively (Tang et al., 2009a). FyB is not a prominent 

variable in describing gait in either 6-OHDA-lesioned or in neuromuscular injury 

animals (Tang et al., 2009b).  This indicates that there may be differences between 

gaits in different disorders and/or there may be differences in gait between genetic 

diseases such as the SOD1-G93A rat (ALS), neurotoxin-induced diseases (6-OHDA 

rat), or injury-induced diseases.  
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

This Ph.D. dissertation addresses an effective way to detect neurological and 

neuromuscular diseases, such as Parkinson’s, ALS, and muscular injuries by 

measuring locomotion parameters in four domains: force, distance, time and 

frequency. A number of LPs are generated from the collected data and several 

selected LPs are used to calculate the probability that a certain disease is present. 

Different diseases have different sets of effective LPs and consequently different sets 

of statistical models. 

Three different statistical models were developed and tested in chapter 3, chapter 

4 and chapter 5, respectively. The inputs of the statistical models are some selected 

LPs instead of all LPs. The criteria of the LP selection are the performance of 

distinguishing the control group from the treated one. Model performance has two 

aspects: sensitivity and specificity. In all three developed models both sensitivity and 

specificity values are better than 90%. 

The experiments in this dissertation test the hypothesis that some neurological and 

neuromuscular diseases which affect gait can be detected at early stages by using gait 

analysis. There are numbers of modern gait analysis methods which is based on the 

integration of multiple components to derive a complete analysis of gait. These 

methods may include observation, videotaping, electromyography, kinematics, 

kinetics and energetics (Kopf et al., 1998). The method we used in this dissertation is 

a combination of videotaping, kinematics and energetic.  



www.manaraa.com

 

 60 
 

The main contributions of this Ph.D. dissertation could be concluded as the 

following: 

(a) Three preliminary experiments for ALS, muscular injury and Parkinson’s 

disease were designed and performed, respectively. Tens of thousands of data sets 

were obtained. The collected gait data could be a valuable reference for the future 

studies. 

(b) An in house gait analysis system for laboratory rats was improved in both 

software and hardware. The system became to be a movable, reliable and efficient 

tool for gait analysis study. This work makes the commercialization of the system to 

be realistic. 

(c) A series of statistical methods which can be used to process the locomotion 

parameters were employed in this dissertation. This work fills in the blank that 

researchers don’t have an effective way to interpret thousands or even millions of gait 

data sets. 

(d) This work developed a method to find a number of significant locomotion 

parameters which are also called biomarkers. The biomarkers will be used as inputs 

of the statistical models. 

(e) This dissertation tested the hypothesis that the probability is not only a 

criterion to classify the treated group and the control one, but also a reflection of how 

severe the disease is. The detail of this contribution is reported in the Chapter 4 of this 

dissertation. 

(f) Training animals is usually important in some animal related experiments. This 

study reported a way to train the laboratory rats to go through the compartment 
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without any stops. The condensed milk was used to attract the rats and some toys 

were introduced. 

(g) This dissertation also put effort to develop an efficiency design to calculate a 

proper sample size we should run in future experiments. The detail of the simulation 

is attached in the appendix. 

There are some deficiencies of this Ph.D. dissertation that will justify future work. 

For instance, the sample size of the three experiments performed is small. It is 

obvious that we need a larger sample size. Due to the small sample size, the result we 

got from the experiments may be too optimistic. 

6.2 Future Work 

This dissertation reports a methodology to detect neurological and neuromuscular 

diseases non-invasively. Further research is still required to strengthen and improve 

our results.   

6.2.1 Improving the Models by Running Larger Sample Sizes 

A statistical simulation which was performed by Feng et al. (2010) shows that a 

big sample size is needed to get a robust ALS detecting model. Figure 6.1 

demonstrates that the classification rate decreases as the number of animals per group 

increases from 10 to 200. The standard deviation of the classification rate is presented 

by the vertical bars. One can observe that the classification rate approaches 0.86; the 

standard deviation decreases as the number of animals increases. Nevertheless, when 

the number of animals per group is about 50, the classification rate will have already 

reached a reasonably stable stage.   
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Figure 6.1 Classification rate versus the number of rats per group for the SOD1-
G93A experiment. Vertical lines represent the standard deviation of classification rate. 

 
Figure 6.2 depicts the maximum standard deviation of the coefficients of the 

logistic regression model divided by the values of the maximum logistic regression 

coefficient. This standard error is plotted versus number of rats per group. This plot 

indicates that the maximum standard error is low and stable when the number of rats 

in each group is 20. We therefore propose to test 50 SOD1-G93A and 50 control SD 

rats in future ALS experiments.   
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Figure 6.2 Maximum standard deviation of the coefficients of the logistic regression 
models for SOD1-G93A laboratory rats. 

 

6.2.2 Application of the Methodology to Human  

The obvious next step is to investigate the application of the developed methods 

to humans. It means that we are going to move from four legged species to two 

legged humans. There are going to be challenges in achieving this goal. In addition to 

fact that the system has to be adjusted to physical dimension of a human subject, the 

pressure distribution of the sole may be of great importance and the current system 

does not measure it. This technically will add many LPs that we will have to study 

and select the most important in capturing the presence of a given disease.  
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Appendix: Designing a Study for Developing Predictive 

Models for Gait Abnormality in Rats 

1. Introduction  

1.1. Assessment of Efficient Design 

Efforts to model human disease depend heavily on modeling rats and mice. 

Studying the efficacy of some drugs extensively with animal models often requires 

using hundreds of animals. If the results are promising, the scientists will advance in 

the process and begin conducting studies on human subjects. The scientific study of 

Parkinson’s and ALS usually depends specifically on rat models. Niebroj et al. (2007) 

studied the examinations of biochemical and electron microscopic (EM) of the spinal 

cord myelin from SOD1-G93A rats in both an early and a late symptom-free period 

of the disease (60 and 93 days of life), and again after four-leg paralysis has occurred 

(120 days of life). Sexual dimorphism in disease onset was also observed in hSOD1-

G93A transgenic rats by Suzuki et al. (2007). The disease onset was consistently 

earlier in male hSOD1-G93A rats. Muir and Whishaw (1999) compared the 

locomotion of the rats with Parkinson’s disease and the control rats by measuring the 

ground reaction forces. 

Each of the studies requires a large number of the laboratory rats. Therefore, the 

cost of laboratory animals is a major budget concern for any subsequent trials. For 

instance, an SOD1-G93A rat developed by Jackson et al. (2002) and Howland et al. 

(2002) could cost up to $100.00 each. Furthermore, performing experiments with rats 

is very labor intensive. Therefore, finding an appropriate sample size becomes the 
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most crucial part of the trial. In this paper, we investigate both the development of a 

design and the determination of sample size for the gait analysis experiment. This is a 

part of an ongoing project at UMBC, where researchers have developed very 

effective models for diagnosing Amyotrophic Lateral Sclerosis (ALS).  

 
1.2 Gait Analysis System 

A gait analysis system (GAS), which is introduced in Tasch et al. (2008), can be 

used to distinguish ALS rats from control rats, as described in Tang et al (2009a), and 

to detect neurological and neuromuscular diseases, as also reported by Tang et al. 

(2009b). The GAS (see Figure 2.1), which can record video images, measures vertical, 

longitudinal, and transverse ground reaction force (GRF). Spatial (longitudinal and 

transverse) limb positions of walking laboratory rats can be observed with the GAS as 

well. 

1.3. Locomotion Parameters (LPs) 

Based on the GRF signals and the recorded images captured by the GAS, the 

values of 20 LPs per limb were evaluated for the left fore (LF), right fore (RF), left 

hind (LH), and right hind (RH) limbs. These LP values were ranked according to their 

individual abilities to distinguish between the control and SOD1-G93A rats. The LPs 

with smaller misclassification error have a higher ability of distinguishing SOD1-

G93A rats from controls. The 20 LPs are listed in Table 1 of Tang et al. (2009a).  

1.4. Logistic Regression Model 

The Logistic regression model is used in Tang et al. (2009a) to predict the 

probability that ALS is present—that is, the model determines that a tested rat belongs 
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to the SOD1-G93A mutant group. The LPs were used as the predictors in the logistic 

regression model: 

logit(π)= 0
1

log
1

k

i i
i

LPπ β β
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= + ⋅
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where 0β  is the intercept and βi is the i-th coefficient of the logistic regression model. 

These parameters can be estimated by SAS procedure, PROC LOGISTIC, using the 

method of maximum likelihood. 

A set of logistic regression coefficients was computed based on the original lab 

data. In their investigation of bovine lameness, Liu et al. (2009) demonstrated that the 

accuracy of the predictions of such models is significantly improved when the LPs 

are transformed via B-spline transformations. An implementation of these 

transformations is available in SAS (PROC TRANSREG). We will refer to these as 

transformed locomotion parameters (TLPs). The Leave-One-Out (LOO) method using 

B-spline cross validation was used to evaluate the performance of the model. See 

Efron and Tibshirani (1993) for further details about this method. For the SOD1-

G93A experiment, Tang et al. (2009a) selected 7 TLPs to build the SOD1-G93A 

model. The performance of models with increasing number (1, 3, 5, and 7) of TLPs 

was shown in Figure 3.1. The prediction performance improves as expected. 

The logistic regression model and LOO technique has been successfully applied 

to two projects. Tang et al. (2009b) applied this to build a model (with 6 TLPs) for 

detecting gait differences induced by denervation, and Tang et al. (2010) built a 
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successful model for predicting lab induced Parkinson’s disease based on gait 

impairment.   

1.5. Obtaining the Dataset 

The source dataset for the sample size calculation described in this manuscript is 

from an experiment which measures early pre-symptomatic changes in locomotion of 

SOD1-G93A rats by Tang et al. (2009a). 

The study comprises 4 SOD1-G93A and 4 Sprague-Dawley (SD) control rats 

from Taconic Laboratory (Germantown, NY).  The 4 SOD1-G93A rats each had 11, 

74, 58, and 31 repeated runs, respectively, and 4 control rats each had 5, 45, 38 and 

16 repeated runs, respectively. The control group is considered normal while the 

corresponding gait abnormality is scored as 0 in the model; SOD1-G93A is the 

designated treatment group while the corresponding gait abnormality is scored as 1 in 

the model. The logistic model then provides a prediction equation based on the TLPs.  

2. Sample Size Determination 

2.1. Prediction Accuracy 

The fundamental question of our analysis is, of course, to determine the number 

of rats needed for a viable experiment. Dobbin and Simon (2007) introduce a 

methodology for sample size determination for prediction in the context of high-

dimensional data that captures variability in both steps of predictor development. In 

this paper, we will address this question in the context of GAS. The logistic 

regression model is the statistical model underlying the GAS technology employed 

here. Thus, the question of optimal sample size does not lend itself to an easy and 

closed solution. In fact, there are a number of choices in the objective function for 
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deriving the sample size. Since our primary objective is to develop a predictive model 

and to ascertain if the predictive ability of the model has a high accuracy, we will 

investigate the sample size issue from the aspect of efficient estimation of 

misclassification probability by cross validation. In order to classify subjects into 

binary groups, the receiver operating characteristic (ROC) curve is widely used for 

judging the discrimination ability of different statistical models by Liu and Wu (2008), 

and Faraggi and Reiser (2002). The ROC curve can be estimated by two approaches: 

parametric method and nonparametric method. See Zhao (2008) for details about 

these two methods. The logistic regression model is used to predict the probability of 

whether a specific subject belongs to a particular group by Hosmer and Lemeshaw 

(2000). 

Meanwhile, several important, practical issues need to be considered. First, even 

though the rats are very expensive, running repeated measurements on each rat is 

relatively easy and inexpensive. Second, rats (divided into treatment group and a 

control group) will be monitored over several days during the clinical study in order 

to evaluate the efficacy of the treatment under consideration.  Therefore, our approach 

to sample size determination will need to take both repeated and the longitudinal 

measurements issues into account. 

We assume the LPs of each rat have a multivariate normal distribution with the 

parameters computed from the lab data mentioned above. The new simulated dataset 

is generated based on this assumption. Our approach to sample size determination is 

based on simulating data from the ALS model and examining the gains in terms of 

estimating the LOO correct classification rate. 
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2.2. Simulation Approach 

Sample size determination for model building needs the choice of a statistic to 

measure the performance. In this case, we evaluate the performance of our models by 

the misclassification rates that are also obtained as the area under the ROC curve. 

Then we make the estimation on an optimal sample size, i.e. the number of rats and 

number of runs per rat, to estimate the misclassification probabilities with a high 

degree of accuracy. We also track the standard errors of the estimated coefficients of 

the logistic regression model as a function of the sample size. 

Clearly, the current pilot study has too few rats, and we will need to collect data 

from a much larger group. There are several key elements to the sample size 

determination. The objective of our study is to come up with a predictive model of the 

form (1) which accurately predicts the gait abnormality. 

In our simulation, we first calculated the means of the LPs in each case (control 

and SOD1-G93A) and the overall covariance matrices of the two groups based on the 

lab data. We derived the desired number of animals by: (i) stabilizing the 

classification rate, and (ii) stabilizing the standard errors of each of the logistic 

regression coefficients in the SOD1-G93A model. 

In model building, we use the LOO estimates of misclassification rates as the 

criteria for determining the best model. For generating data, we postulate the 

following logistic regression model for the jth run of the rth rat. Let Yrj=1 if the rth 

rat showed ALS symptom during the jth run, and let  
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where k is the number of TLPs included in the model. We can incorporate the within 

and between rat variability into the model (a-3) in order to generate the simulation 

data: 
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where iη  is an independently and identically distributed multivariate normal random 

variable.  

Following the hierarchical structure of model equations (a-3) and (a-4), we 

generate the TLP data in two steps. For a given value of the β-coefficients, we first 

generate the TLP average values corresponding to rth rat, and then further generate 

the TLP values corresponding to nr runs of the rth rat. We use the mean and 

covariance statistics from the pilot data as the parameters of the multivariate normal 

distribution. This hierarchical approach enables us to incorporate the correlation 

between runs corresponding to the same rat. Our simulations are based on this model. 

From the current data set, we compute the following statistics for the TLPs. Recall 

that TLPirj denotes the ith TLP for the rth rat in the jth run. We include an additional 

subscript to denote whether or not a rat belongs to a control group or to the SOD1-

G93A group. That is, we let TLPCirj indicate the ith TLP for the rth rat, in the jth run, 

in the control group. Similarly, TLPDirj denotes the ith TLP for the rth rat, in the jth 

run, in the disease group. 

For the control group, 
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where N is the total number of runs, and 
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Similarly, we can define for the disease group. Now, we can obtain the 

( , )thu v element of the within rat variance and covariance matrix ˆ
wΩ as follows: 

( )
( )( )

1 1

1

1ˆ ( , )
1

rnR

Cur Cvrw Curj CvrjR
r j

r
r

u v TLP TLP TLP TLP
n

• •

= =

=

′
Ω = − −

−
∑∑

∑
. (a-8) 

The overall variance-covariance matrix cΩ̂  is used for generating the TLP values 

for the rats and wΩ̂  is used for generating the TLP values for various runs within each 

rat. In summary, we simulated the procedure in the following steps: 

1. We generate a new simulated dataset with 10 rats per group (control and 

SOD1-G93A), and each rat has 20 repeated runs.  

2. The logistic regression method is then applied to calculate the probabilities of 

a test run belonging to SOD1-G93A rats in this new simulated dataset, which 

has 400 observations (200 per group). The correct logistic regression 

classification rate based on SOD1-G93A model is recorded. The 

corresponding standard errors of the classification rates and the standard 

errors of the coefficients in the model for different numbers of rats are also 

tracked. The cutoff line for the classification was 0.5.  
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3. In order to reach a reliable simulation result, step 1 and 2 were then repeated 

1000 times, which is both an arbitrary number and is also big enough. The 

average of classification rate is computed based on these 1000 simulated 

datasets.  

4. Step 1, 2 and 3 is then repeated for 20, 30, 40, etc. rats per group. Then, the 

average of the classification rate and the corresponding standard errors, the 

maximum standard error of the βs in the logistic regression model, can be 

found for variant numbers of rats. One can make the decision on how many 

rats are going to be run according to the information given above. 

3. Conclusion 

We would expect to see an inverse relationship between the numbers of rats with 

the estimated classification rates. If there are fewer rats in the experiment, the logistic 

model will be more likely to cluster the similar data into their appropriated groups, i.e. 

high classification rate. On the other hand, if we recruit more rats into the experiment, 

then the failure to cluster the corrected group will be high, i.e. a higher 

misclassification rate. However, the classification rate will approach the true 

population parameter as the number of rats becomes larger. Therefore, it would be 

reasonable to select the number of rats at which the classification rate begins to 

stabilize with an acceptable degree of accuracy. 

Figure 6.1 demonstrates that the classification rate decreases as the number of 

animals per group increases from 10 to 200. The standard deviation of the 

classification rate is presented by the vertical bars. One can observe that the 

classification rate approaches 0.86; the standard deviation decreases as the number of 
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animals increases. Nevertheless, when the number of animals per group is about 50, 

the classification rate will have already reached a reasonably stable stage.   

As anticipated, the curve is a decreasing function of the number of rats in Figure 

6.1. The standard deviation of each classification rate is also included into the plot. 

We noticed that standard deviation bars are getting narrower as the number of rats 

increases. The classification rate converges as the number of rats increases. Most 

importantly, we see that the classification rate also reaches the stable level between 

50 to 60 rats. The curve does not fluctuate beyond 50 or 60 rats; hence, we believe 

that 50 rats per group will be an adequate sample size.   

Figure 6.2 depicts the maximum standard deviation of the coefficients of the 

logistic regression model divided by the values of the maximum logistic regression 

coefficient. This standard error is plotted versus number of rats per group.  This plot 

indicates that the maximum standard error is low and stable when the number of rats 

in each group is 20. We therefore decided to test 50 SOD1-G93A and 50 control SD 

rats in the future ALS experiment.   

Furthermore, another approach to check the sample size could be the stabilization 

of logistic regression coefficients. In step 2 of the simulation, we also output the 

standard error of the logistic regression coefficients. At the completion of step 3, we 

will get 1000 sets of standard errors for each of logistic regression coefficients in 

SOD1-G93A model.  

The average standard errors of each coefficient are computed based on these 1000 

iterations. We then used the SOD1-G93A model to compute the logistic regression 

coefficients on the transformed data and to divide them into the average standard 
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errors in order to standardize the averages. The maximum output of the 28 ratios is 

kept as the upper threshold of the coefficient variability. Step 4 is then repeated for 

the different number of rats. Figure 6.2 showed that the maximum standard error of 

the logistic regression coefficients started to stabilize around 40 or 50 rats. This result 

confirmed that 50 rats is a reasonable sample size.  

4. Discussion 

An efficient design is very important for running experiments involving animals 

primarily because it can reduce the cost of these experiments. In this manuscript, we 

simulate the sample sizes for the gait analysis experiment of laboratory rats by using 

the data we gathered. The average of classification rates and the maximum standard 

error of the coefficients in the logistic regression model versus the number of animals 

in each group are plotted. The sample size of the experiment can be therefore 

determined by the plots. 

The area under the ROC curve is usually used as a measure for the effectiveness 

of diagnostic markers. In this paper, we use ROC to evaluate the performance of the 

models. It is also proved that the number of runs from one rat is not significantly 

related to the classification rates. 
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